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Mixing of shear thinning polymeric fluids in long channels with patterned boundary conditions is studied
through molecular dynamics simulations. Patterned wettability was shown to induce spatially varying slip
lengths at the channel walls which in turn induce mixing in the fluid. To quantify the amount of mixing for
different wave lengths of patterns, transverse velocity profiles were evaluated. The transverse velocity profiles
from the molecular dynamics simulations were then compared with predictions from continuum modeling and
good quantitative agreement was found. Offsetting the pattern was shown to produce better mixing in the
center of the channel. Transverse flow is found to increase when the radius of gyration of the chains is smaller
than the pattern length. We also implement an oscillating �time dependent� body force and find that the
transverse flow increases significantly. However, we do not find an increase in transverse flow with frequency
of the oscillation as predicted from continuum modeling and we postulate reasons for this behavior.

DOI: 10.1103/PhysRevE.80.036309 PACS number�s�: 47.57.Ng, 47.61.�k, 47.85.lk, 47.85.Np

I. INTRODUCTION

Microfluidics or nanofluidics is a rapidly developing area
of physics with potential applications in chemical, biomedi-
cal and biochemical processes �1–3�. This field has attracted
tremendous attention in recent years because of its capability
to function with small amounts of reagents, robustness, high
sensitivity, and portability to name a few �1,3�. Mixing of
fluids is essential in most of the microfluidic applications �3�.
Applications in the area of biochemistry, drug delivery, cell
activation, protein folding etc. require rapid mixing of fluids
�1�. It is well known that the flow inside microchannels is
usually laminar because of the low Reynolds number associ-
ated with the flow and hence mixing is mainly diffusion
dominated which is a slow process. To achieve good mixing
therefore demands long channels and time scales. In general,
there are two types of micromixers that are used to induce
mixing in these devices, active and passive mixers. Active
mixers use external perturbations such as pressure, tempera-
ture etc. �1� on the system to enhance mixing. They are rapid
and externally controllable but difficult to manufacture �1�.
On the other hand passive mixers use the topology of the
device to promote transverse flows. These are relatively easy
to manufacture but cannot be controlled externally. A good
number of active and passive mixers are already in use. For
a detailed study on different types of mixers the reader is
referred to the article by Nguyen and Wu �1�. A good intro-
duction to the theory behind the mixing processes can be
found in the article by Ottino and Wiggins �2�.

When scaling down from macroscale to microscale, fluids
do not behave in the same manner as at macroscale. At mi-
croscale, different aspects come into picture such as low
Reynold’s number �Re��Lv /� where � is the fluid’s den-
sity, v is a characteristic fluid velocity, L characteristic length
scale and � is the fluid viscosity�, large surface area to vol-
ume ratio �SAV� etc. Because of the large SAV, at micro-
scale, surface properties can greatly influence the fluid flow.

As pointed out earlier because of the low Re number the flow
is viscous dominated therefore offers great resistance to the
flow. Generally, in fluid dynamics the no-slip boundary con-
dition is assumed at the solid-fluid interface. According to
this condition the velocity of the fluid at the wall is equal to
that of the wall. This boundary condition is found to be a
good approximation at a macroscopic level but violations of
this condition have been observed at the microscale. Recent
experimental and molecular dynamics simulation studies
have reported that the no-slip boundary condition at the
solid-fluid interface is not obeyed in certain circumstances
�4–8�. Some of these studies noticed significant slip lengths
�4,5,9�. It has been demonstrated that slip at the wall-fluid
boundary can be used to overcome the resistance offered in
microchannels �6,10�. The slip length is defined as the dis-
tance in a direction perpendicular and into the wall where the
linear extrapolation of the longitudinal component of the
fluid velocity becomes zero. A detailed list of experiments
and observed slip lengths is presented in the article by Lauga
et al. �11�. However the magnitude of the slip lengths re-
ported in some of these studies is still debated due to pos-
sible experimental errors �11�. The slip length depends on
several physical properties and extensive research has been
carried out in understanding the various physical properties
that can influence the slippage of the fluid over the surfaces.
Flow over atomistically smooth walls is shown to produce
large slip lengths while an increase in the surface roughness
yielded much smaller slip lengths �8,10�. Flow over chemi-
cally patterned surfaces with periodic grooves have shown
formation of a composite layer at low pressures which in
turn enhanced the slip lengths significantly �10�. Wettability
of the surface also plays an important role in determining the
slip length �8,12,13�. Using superhydrophobic surfaces slip
lengths up to 2 �m were observed �4�. A strong interaction
at the solid-wall interface produces a small slip length and
vice versa �8�. Barrat and Bocquet �12� conducted molecular
dynamics simulations of a Newtonian fluid in a nanopore.

PHYSICAL REVIEW E 80, 036309 �2009�

1539-3755/2009/80�3�/036309�12� ©2009 The American Physical Society036309-1

http://dx.doi.org/10.1103/PhysRevE.80.036309


They have noticed that changing the wettability parameter
changes the slip length of the fluid at the solid-fluid interface.
In this study they found that decreasing the wettability of the
wall increased the slip length.

Shear dependent slip behavior of Newtonian fluids was
studied by Zhu and Granick �14�. They found that slip length
increases with an increase in the shear rate. A more detailed
study of the relationship between the shear rate and slip
length for Newtonian fluids was conducted by Thompson
and Tronian �7�. In this case the slip length was found to
increase with the applied shear rate up to a critical value.
Shear rate dependence of slip for polymeric fluids have
yielded similar results �15�. The slip length was also found to
increase with the chain length up to the entanglement length.

In the context of fluid mixing, it has been suggested this
slip behavior of the fluid at the wall can be used to overcome
some of the limitations posed by the laminar flow. Using
patterned substrates in microchannels, Kuksenok et al. �16�
found that mixing of binary fluids can be enhanced. Poi-
seuille flow of binary fluids over chemically patterned
patches of wettable and nonwettable regions induced trans-
verse flows in this study. Hendy et al. �17� have studied the
flow of Newtonian fluid over the patterned wettable walls
analytically and compared the results with molecular dy-
namic simulations. They studied the effect of patterned wet-
tability, by creating regions of high and low slip along the
channel walls, on the fluid flow. By putting a pressure differ-
ence over the channel ends, which would normally induce a
Poiseuille type flow, they observed significant transverse
flows. Ou et al. �18� exploited this effect to create a micro-
scale device based on hydrophobic ridges that was found to
enhance mixing of an aqueous dye. However mixing of mac-
romolecules in microfluidic devices is important in applica-
tions dealing with biomolecules or polymers �1,3�. Because
of the macromolecular nature of such fluids, diffusion can be
a much slower process than for simple fluids which is unde-
sirable in many practical applications. Thus, methods for
rapid interspersion of polymeric fluids need to be considered.
Pereira �19� has carried out a perturbation analysis of a con-
tinuum theory for a visco-elastic fluid with patterned slip
boundary conditions along the lines of Hendy’s �17� work.
From this study he found that mixing is enhanced for shear
thickening fluids but suppressed for shear thinning fluids,
when compared to Newtonian fluids. Furthermore, applying
a time dependent pressure it was shown that transverse flows
were enhanced for elastic fluids.

In this paper, we discuss the implementation of molecular
dynamic simulations of polymeric fluids over the patterned
wettable surfaces and study their mixing behavior. The paper
is organized in the following way. In Sec. II we give details
on the simulation method, in Sec. III we characterize the
nature of the fluid and its continuum characteristics by car-
rying out Couette and Poiseuille flow simulations while in
Sec. IV we study the flow of these fluids over patterned
surfaces and compare the results with continuum models.

II. SIMULATION METHOD

The simulation domain consists of a coarse grained bead-
spring polymeric fluid confined between two atomistically

flat walls. The simulation geometry is shown in Fig. 1 with
the walls lying in the xz plane and flow occurring in the x
direction. Each wall contains up to three deep fcc �100� atom
layers. Throughout all the simulations the wall atoms were
fixed in space and there was no interaction between them.
The interaction between the wall atoms and fluid monomers
and between the nonbonded fluid-fluid monomers was mod-
eled by the shifted Lennard-Jones �LJ� potential given by

�LJ�r� = �4����

r
	12

− ��

r
	6

− � �

rc
	12

+ � �

rc
	6
 if r � rc

0 if r � rc
�

with a cutoff radius of rc=2.5� unless otherwise specified.
Here r is the distance between the particles, while � and �
are the energy and length scales used in the simulation. The
density of the wall �w was fixed at 0.7 �−3. Wall-fluid and
fluid-fluid energy parameters are represented by �wf and � f f,
respectively. The nonbonded monomers interact via the LJ
potential with � f f =1.0. This parameter for the nonbonded
monomer-monomer interaction was constant throughout all
simulations discussed in this paper. In addition, the bonded
monomers of a molecule interact via the finite extensible
nonlinear elastic �FENE� potential

�FENE�r� = �−
1

2
kr0

2 ln�1 − �r/r0�2� if r � r0

	 if r � r0
�

where parameters r0=1.5� and k=30��−2 �20�. This set of
parameters ensures that there are no bond breakages or chain
crossings. In all our simulations we have used �=1.0. The
density of the fluid was maintained at ��0.9�−3 with each
polymer chain consisting of N=20 monomers. The mass of
both the fluid monomers and wall atoms was set to 1.0. The
temperature of the system was controlled by thermostating
the fluid monomers using the Langevin thermostat. To avoid
interference with the flow direction only the z component of
the equation of motion was thermostated �21�. The tempera-

FIG. 1. �Color online� xy-cross section of the simulation setup is
shown here. The volume between the two parallel plates, placed at

w, was filled with polymeric fluid.
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ture of the fluid was maintained at T=1.0� /kB. The govern-
ing equations of motion are

mẍi = − 
i�j

��ij

�xi
, �1�

mÿi = − 
i�j

��ij

�yi
, �2�

mz̈i + m�żi = − 
i�j

��ij

�zi
+ f i, �3�

where �=1.0�−1 is the friction constant and f i is the random
force acting on particle i that mimics the random collisions
taking place between the fluid particles. Here �=�m�2 /� is
the characteristic LJ time scale. Periodic boundary condi-
tions were applied in x and z directions. The equations of
motion were integrated using the Verlet algorithm �22�. The
time step size used in our simulations was t=0.001�. All
the quantities are expressed in reduced LJ units.

The initial configuration of the fluid was generated by
randomly placing polymer chains in the given volume. Be-
cause of the random placement of the polymer chains, the
initial configuration is highly overlapping and using the LJ
potential between the fluid monomers would lead to unphysi-
cal results such as bond breakings. Therefore we must use a
mechanism by which the initial melt is uniformly distributed
in space without any overlaps. To do this we use the soft
potential between the fluid monomers �23�,

�s�r� = �A�1 + cos��r/rc�� if r � rc

0 if r � rc,
�

where the prefactor A is the amplitude of the interaction
energy and rc=1.1226� is the cutoff radius. The system was
equilibrated for 50� using this potential. The value of A in-
creases in time from 0.0 to 60.0 during this period. After this
time period we achieved a reasonably uniform melt and the
interaction between monomers can now be changed to the LJ
potential. The system was further equilibrated using the LJ
potential first for 50� with rcf f

=1.12246� then for another
50� with rcf f

=2.5�. After this equilibration period the cutoff
radius was fixed at rcf f =2.5� for the rest of the simulation.
Here rcf f

denotes the cutoff radius for the interaction between
the fluid-fluid monomers. The above procedure was the first
step in all the simulations mentioned in this paper.

III. CHARACTERIZATION OF POLYMERIC FLUID

We now begin our discussion of the MD simulations. The
first thing we need to do is fully characterize the polymer
melt that we simulate and relate it to the continuum model
�19�. Once this is established we can proceed to carry out the
simulations with variable boundary conditions and variable
pressure gradients.

A. Couette flow

Initially, a set of Couette-flow simulations were carried
out to determine the nature of the fluid, that is whether the

fluid is shear thinning or shear thickening. To begin with
both walls were fixed and the fluid was equilibrated using the
method described in the last section. Then, the upper wall
was slowly moved in the x direction while the lower wall
was stationary. The LJ interaction energy between the wall
atoms and monomers was set to �wf =1.0. To realize the
physical situation the velocity of the upper wall was in-
creased in steps of 0.1��−1 starting from zero up to U, the
desired velocity at which the upper wall moves. After each
velocity increment, the system was equilibrated for 10�, until
it reached the final velocity U. When the upper wall velocity
reached the desired value U, a further equilibration was done
for 500� to achieve steady state. The average velocity pro-
files were calculated by dividing the system in the y direction
into bins of size y=0.2�. At each time step the fluid par-
ticles were mapped into one of these bins and the average
velocity in those particular bins was calculated. A time aver-
age of ux�y� was obtained over the next 103�. A number of
simulations with different wall velocities �shear rates� were
conducted and the corresponding velocity profiles are shown
in Fig. 2. We have observed that the slip length is dependent
on the applied shear rate and this is consistent with the lit-
erature �15,24,25�. The shear rate is defined as �̇=U /2w,
where 2w is the separation between the walls. An increase in
the slip length was observed with an increase in the shear
rate. The slip length as a function of shear rate is shown in
Fig. 3. This result is in agreement with the previous polymer
flow studies where the slip length of the polymeric fluid in
Couette flow simulations was found to be dependent on the
applied shear rate �24,25�. We find general qualitative agree-
ment with these previous studies, although direct quantitative
comparison is not possible since they were conducted under
different conditions which affect the measured slip length. A
slight curvature was observed in all velocity profiles at a
distance approximately � away from both walls and this de-
viation from linearity close to the walls can be attributed to
layering of fluid particles that takes place near the walls. The
stress tensor components were calculated by the Irving-
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FIG. 2. �Color online� Longitudinal velocity profiles obtained
for different upper wall velocities U. The velocity profiles are linear
except for slight curvature up to a distance of � away from both
inner wall surfaces. The magnitude of the velocity profiles is linear
in U.
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Kirkwood method �26�. We used an atomistic description of
this model as mentioned by Jabbarzadeh et al. �27�,

�xy = −
1

V�
i=1

N

miuixuiy + 
i=1

N


j�i

N

rijxFijy� , �4�

where V is the volume of the system. The first term in the
above equation is the kinetic energy contribution to the stress
tensor and uix and uiy are the velocity components of the
particle i in x and y directions, respectively. The second term
is the potential energy contribution from the pair wise and
bond interactions where rijx is the x component of the dis-
tance vector between particles i and j and Fijy is the force
component in the y direction between particle i and j. The
shear viscosity is defined as

� =
�xy

�̇
. �5�

We have used the power law model to calculate the viscosity
of the fluid. The viscosity of a power law fluid �28� is given
by �=m��̇�n−1, here m is the consistency coefficient and the
exponent n determines the nature of the fluid. A value of
n�1 means the fluid is shear thinning and n�1 corresponds
to a shear thickening fluid. Fig. 4 shows the fluid viscosity �
as function of increasing shear rate �̇. Large error bars were
noticed at low shear rates and the magnitude of the error bars
diminished with an increase in the shear rate. This is because
at low shear rates the thermal velocity of the fluid is greater
than the velocity of the fluid itself thus leading to large error
bars in viscosity �25,29,30� at low shear rates. By measuring
the gradient of the curve in Fig. 4, for large shear rates, we
found n=0.607 63�0.0138 71 suggesting that the fluid un-
der consideration is shear thinning. The value of the consis-
tency coefficient m was found to be 1.839 92.

B. Determining the slip length

The slip length of the fluid at the wall-fluid interface is
strongly influenced by the interaction between them. To
study and quantify the effect of the wall-fluid interaction

energy �wf on the slip length �, Poiseuille-type flows were
simulated by applying a constant body force on each mono-
mer in the x direction. A body force of F=0.05m� /�2 was
applied on each fluid particle at every time step while the
wall atoms remained stationary. The fluid was driven through
the channel by the body force, in the absence of a pressure
gradient, this effectively gives rise to a Poiseuille type flow
�31,32�. For a particular value of �wf the fluid was initially
equilibrated for 1.5�102�. Then the body force was applied
on the system gradually in steps of 0.01m� /�2 until it
reached the desired value of 0.05m� /�2. At each increment
of body force the system was allowed to equilibrate for 10�.
Once the body force reached F=0.05m� /�2, the system was
equilibrated for a further 103� to attain steady state. After the
equilibration period, average longitudinal velocity profiles
were calculated by dividing the fluid particles into bins of
width y=0.2� in the y direction and taking averages over
the next 2�103�. These longitudinal velocity profiles for
different values of �wf are shown in Fig. 5. Once we have
obtained these velocity profiles we need to calculate the slip
lengths. Our simulation results can be fit to the theoretical
predictions and by doing so we can extract the slip lengths.
To calculate slip lengths we need to solve the Navier-Stokes
equations,

�� �u

�t
+ u · �u	 = − � · �= + �F , �6�

� · u = 0, �7�

where �= is the stress tensor. The Navier-Stokes solution is
two dimensional �x ,y� since the MD simulation domain is
periodic in the z direction. The left-hand side of the above
Eq. �6� is assumed to be zero since the flow is considered to
be laminar. Furthermore, we must have ux=ux�y� since we
have uy =0 from Eq. �7�. We use the Navier slip-boundary
condition to solve the Navier-Stokes equations. According to
the Navier slip-boundary condition the longitudinal velocity
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FIG. 3. The slip length is calculated for different shear rates. It
increases almost linearly before starting to decrease.
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FIG. 4. �Color online� Log-log plot between shear viscosity �
and shear rate �̇. The viscosity of the fluid is given by �=m��̇�n−1.
At high shear rates the plot is linear and can be seen in the embed-
ded figure. A linear fit at high shear rates using the above equation
yields a value of n=0.607 63�0.013 871.
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component of the fluid at the solid wall is not zero but given
by

ux��w� = 
 �
�ux

�y
��w� , �8�

where � is the slip length. Thus solving Eq. �6� appropriately
yields the resulting longitudinal velocity profile

ux�y� = �Fw�

m
	1/n� w

1 + 1/n�1 − � y

w
	1+1/n� + �


for y � 0, �9�

where m and n can be obtained from the Couette flow simu-
lations. Note that ux�y� is symmetric about y=0. Thus all the
symbols in Eq. �9� are known except for the slip length �. By
fitting Eq. �9� to the velocity profiles in Fig. 5 we obtain the
relationship between �wf and �. The effect of interaction pa-
rameter �wf on the slip length � is shown in Fig. 6. The slip
length was found to decrease with increasing �wf. This is

physically realistic since a larger �wf implies that monomers
will be attracted to the wall and consequently will tend to
stick to it, leading to a small slip length �.

IV. MD SIMULATIONS FOR ENHANCED MIXING

A. Patterned boundaries

We now address the important part of our work, which is
studying the effect of the patterned slip boundary condition
on the fluid flow. The patterned slip boundary conditions
were implemented by creating alternate regions of high slip
�low wettability� and low slip �high wettability� along the
walls in the x direction. As discussed in the earlier section
this can be done by varying the wall-fluid interaction param-
eter �wf. In our simulations, this was done by creating two
types of the wall atoms, A and B. If the fluid interacts with
A-type wall atoms then the LJ interaction parameter is
�wf1

=0.5 and the interaction parameter is �wf2
=0.9 if the

fluid interacts with the B-type wall atoms. Consequently
fluid particles experience a large slip when they interact with
wall atoms of type A and a small slip when they interact with
wall atoms of type B. This setup is shown in Fig. 7.

The system was brought to equilibrium using a similar
approach to that discussed in the previous section. After the
equilibration period, at each time step the y-velocity compo-
nent uy�x ,y� of the monomers was binned into regions of
area xy=1.0�2. Transverse velocity profiles were evalu-
ated by averaging the particle uy�x ,y� into one of these bins
over the next 4�103�. This averaging period was found to
be sufficiently large as results obtained with longer averaging
periods have shown no significant deviations.

We have carried out simulations with different pattern
wave lengths. The wavelength � �or wave number k=2� /��
of the pattern can be varied by changing the length of A or B
type wall atom regions. Simulations were conducted with
different pattern lengths i.e., different kw values �where w is
half width of the channel�, and their effect on the transverse
velocity was quantified. The obtained time-averaged trans-
verse velocity profiles for kw=� /2, 2� /3, �, 4� /3, and 2�
are shown in Fig. 8. Alternate circular regions of high posi-
tive and negative transverse velocities were observed in the
both upper and lower halves of the xy-cross section about the
channel axis. The transverse velocity is close to zero along
the center of the tube and near the walls with a maximum in
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FIG. 5. �Color online� Average longitudinal velocity profiles
from simulations for different values of �wf for y�0. Note, the
longitudinal velocity profile is symmetric about y=0.
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FIG. 6. Slip length � as a function of the interaction parameter
�wf.

FIG. 7. �Color online� Schematic diagram representing the pat-
tern slip boundary condition.
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between. The transverse velocity profiles are antisymmetric
about the center of the channel. Thus if the upper half has a
positive transverse velocity region then the lower half has a
negative transverse velocity region. This creates fluid flow in
the transverse direction in such a way that good mixing is
achieved. However, we have observed that these transverse
velocity regions do not exactly align with the wall pattern.
This observation is consistent with continuum theory which
suggests that there is a phase lag of � /2 between the actual
pattern and the transverse velocity response �17,19�. The vor-
ticity defined as ����u, corresponding to the case where
kw=� /2 is shown in Fig. 9. �Note, the dominant Pouseille
velocity has been subtracted from u to obtain this plot.� The
vorticity is �approximately� symmetric about the x axis. Con-
sider the domain x�0. In this domain the maximum magni-
tude of the vorticity occurs in the region between the maxi-

mum magnitude of the transverse velocity. This is in
agreement with the expectations from continuum theory
�19�. Along the axis of the channel the vorticity is small as in
these regions the flow is predominantly in the longitudinal
direction.

To get a clear picture of what was happening on the mo-
lecular levels we have taken few snapshots of two polymer
chains at different times �Fig. 10�. The figure clearly shows
that the polymer molecules change their positions in the
transverse direction. The polymer molecules were also found
to change their conformations as opposed to stretch in the
direction of the flow as reported in previous studies �15�.
This might be a direct consequence of using periodic wet-
table and nonwettable regions. The polymer molecules
would like to wet the surface in some regions therefore pre-
fer a more closely bound conformations whereas in the non-

(a) (b)

(c) (d)

(e)

FIG. 8. �Color online� Contour plots of the transverse velocity profile uy�x ,y� for various kw. Alternative high positive or negative
transverse velocity regions �dark� were observed in both upper and lower halves of the channel.
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wettable regions they would like to get away from the walls
and hence take up more elongated conformations.

Well developed transverse flows were observed when the
radius of gyration of polymers �Rg� is smaller than the pat-
tern length. The average radius of gyration of the polymer
chains used in our Poiseuille flow simulations under constant
slip boundary condition ��wf =1.0� was Rg=5.369�. How-
ever, in the case of kw=2� the pattern length was 4.8�
which is less than the radius of gyration of the polymers. In
this case the transverse flows were suppressed. The ratio of
the length of the patterned region to the radius of gyration of
polymer chains seems to be an important factor in determin-
ing the amount of transverse flow that can be achieved.
When the length of a patterned region is comparable with the
radius of gyration of the polymer chains then, on average, a
polymer chain spans two different wettable wall regions si-
multaneously. Hence these chains start interacting with the

wall as if it is a homogeneous continuum and thus decreasing
the transverse flow. In our simulations for kw=2�, the length
of a patterned region was less than the radius of gyration of
polymer chains and we have noticed a significant drop in the
transverse velocity. The magnitude of the maximum trans-
verse velocity in this case decreased by a factor of 2 com-
pared to the magnitude of the maximum transverse velocity
for kw=� /2. We have also observed that the transverse flow
was not as well developed as in the other cases where the Rg
was less than the pattern length. This indicates that the length
of the patterned regions should be longer than radius of gy-
ration to enhance transverse flows. This is an important re-
sult, which is not captured by the continuum modeling since
it does not contain information about individual chains and
hence does not include the length-scale Rg. Alternatively,
putting these two results together leads us to a relationship
between channel width and radius of gyration for maximum
transverse velocity, i.e. w�Rg /2. Of course, the upper limit
on the channel width is given by �external� physical restric-
tions.

Simulations with offset patterning of the walls were also
conducted to study their effect on the transverse flow. The
offsetting was done by moving the upper wall patterning by
3.2� to the right and keeping the lower wall’s position un-
changed. We refer to the earlier case where the patterns were
exactly parallel to each other as parallel patterning. Results
of the simulations with offsetting in the pattern have shown
no significant deviations in the magnitude of the maximum
transverse velocity compared to that of parallel patterning.
However, the transverse velocity regions in the upper and
lower halves of the cross-section do not align parallel to each
other as in the case of parallel patterning but they are offset
�see Fig. 11�. This was expected since the offsetting in the
patterning leads to different flow behavior on the either side
of the channel axis and hence offsetting of transverse flow
regions occurs. An interesting observation from these simu-
lations is that the transverse velocity is nonzero, in certain
regions, at the center of the channel. Hence, with this pat-
terning setup fluid elements in the center of the channel can
flow toward the boundaries. In contrast, in the parallel pat-
terning case, the transverse fluid velocity in the center of the
channel is always zero and thus these fluid elements would
never mix �except through diffusion�. Therefore we suggest

FIG. 9. �Color online� The vorticity calculated for the same
simulation as Fig. 8�a�. Note, maximum vorticity occurs in the re-
gion between maximum magnitude of transverse velocity.

FIG. 10. �Color online� Snapshots of polymer conformations at
different times. Note, on average chains near the middle of the
channel are more elongated in the x direction compared to chains
near the boundaries. In addition, chains near the boundary are more
compact.

FIG. 11. �Color online� Contour plot of transverse velocity pro-
file uy�x ,y� for kw=� /2 with offset patterning.
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to obtain mixing throughout the channel, it is better to have
offset patterned regions on opposite sides of the channel.

B. Comparison with continuum modeling

We would like to compare our results with the continuum
modeling �19� which was based on a perturbation analysis
and valid only for small variations in the slip length. In the
continuum modeling the Navier-Stokes equations were
solved using the Navier slip boundary condition. The pat-
terned slip boundary condition was implemented by defining
the slip length as a function of x,

� = �0�1 + �eikx� , �10�

where � is small perturbation about the mean value of slip
length �0. Because of the variation in the slip boundary con-
ditions both ux and uy must be functions of x and y. Using the
perturbation analysis the longitudinal and transverse velocity
profiles can be written as

ux = ux0
+ �ux1

+ O��2� + ¯ , �11�

uy = �uy1
+ ¯ , �12�

where ux0
is given by Eq. �9�. Thus solving the Navier-

Stokes equations with the above conditions yields

�uy� = ��R , �13�

where

� = w�Fw�

m
	1/n

�14�

and R is given by the solution of the following differential
equation

ȳ2d4R

dȳ4 + 2�1 − 1/n�
d3R

dȳ3

+ 2�ȳ2�kw�2�1 − 2/n� − �1 − 1/n�/n�
d2R

dȳ2

+ 2�1 − 1/n��1 − 2/n��kw�2dR

dȳ

+ �kw�2��kw�2ȳ2 − �1 − 1/n�/n�R = 0, �15�

where ȳ=y /w. The boundary conditions for the above equa-
tion are

R�0� = 0, �16�

R�1� = 0, �17�

R��0� = 0, �18�

R��1� + ��/w�R��1� = ��/w��kw� . �19�

To attain a reasonable comparison between the continuum
analysis and molecular dynamics simulations, we carried out
simulations corresponding to a small �. Looking at Fig. 6 the

optimal �wf values were found to be �wf1
=0.8 and �wf2

=0.9
for kw=�. In this case, the maximum transverse velocity
produced in the MD simulation was uymax

=0.007. �Note, for
the MD simulations, patterning of the boundaries is carried
out as described in Secs. III B and IV A, so that we have a
square-wave variation in the slip length. While continuum
theory assumes a sinusoidal variation in the slip length we
have found from our previous work �17� that the transverse
flows are quite similar in both cases, as long as � is suffi-
ciently small.� In order to compare this molecular dynamics
result with the continuum analysis we need to obtain an �
value from our simulation. An estimate of � was
obtained using the following method. The slip lengths are
�1 /w=0.363 133 and �2 /w=0.176 313 for �wf1

=0.8 and
�wf2

=0.9, respectively, corresponding to a mean value of
�0 /w=0.2697. Thus we define � by

�1 = �0�1 + �� , �20�

�2 = �0�1 − �� . �21�

Solving for � from the above two equations yields
�=0.3463. Although we could have used another set of in-
teraction parameters to get a much smaller value of �, we
have observed that this leads to a very small transverse flow
which is difficult to distinguish from pure thermal motion.
Thus we use this value of �=0.3463 to make a comparison
between the continuum theory and simulations. The con-
tinuum equations were solved using these set of parameters
numerically and the result is shown in Fig. 12. Thus using
Eqs. �13� and �14� together with the value of � given above
and the maximum magnitude from Fig. 12 we find a maxi-
mum transverse velocity uymax

=0.0058. Thus, the maximum
value of the transverse velocity obtained from the theory and
molecular dynamics simulations compare quite well.

C. Time dependent body force coupled to patterned boundaries

It has been shown by Pereira �19� that the transverse flow
for shear thinning fluids can be enhanced by coupling a time

0 0.2 0.4 0.6 0.8 1
y/w

-0.02

-0.015

-0.01

-0.005

0

R

FIG. 12. The function R as a function of y /w solved using Eq.
�15� with parameters selected to agree with molecular dynamics
simulation �see text�.
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dependent pressure gradient with patterned slip boundary
condition. In our case this can be achieved by applying a
sinusoidal body force as a function of time. We will briefly
discuss the theory involved. The sinusoidal body force ap-
plied on each monomer is given by

F = F0�1 + � sin��t�� , �22�

where the body force F fluctuates about the mean body force
F0 with a small perturbation � and � is the frequency of the
oscillation.

The fluid behavior was modeled by a linearized White-
Metzner model. According to this model

�= + �
��=

�t
= − ���̇��̇

=
, �23�

where � is the relaxation time of the fluid. The longitudinal
and transverse velocity profiles can be obtained by using the
perturbative approach by expanding the velocity profiles in
terms of � and �.

u = u0 + �u1 + ��u10 + u11 sin��t�� + ���u�10 + u�11 sin��t��

+ O��2,�2� + ¯ �24�

v = �v1 + ���v�10 + v�11 sin��t�� + ¯ �25�

The sinusoidal body force effect on the transverse flow can
be quantified by solving v�11 �19�. Solving the Navier-Stokes
equations using the above equations with appropriate bound-
ary conditions yields

�v�11� � �1 + �2�2�1/2. �26�

Thus the model predicts a sinusoidal body force should in-
crease the magnitude of the transverse flow and, furthermore,
this magnitude increases with increasing frequency of the
oscillating body force. The above model was necessarily
simplified since it was required to obtain semianalytic solu-
tions or, at the very most, numerical solutions which were
not too complex. We will discuss some of the deficiencies in
this continuum modeling below especially in relationship to
our MD simulations.

We apply a sinusoidal body force with a perturbation con-
stant, �, in Eq. �22� set to 0.1, so that the maximum value of
this oscillating body force was 10% larger than for the con-
stant case. The frequency � was increased from
2� /100 rads /� to 2� /10 rads /�. The body force was
changed incrementally after every � time to allow the ther-
mostat to stabilize the temperature of the system. In each of
these simulations the system was equilibrated roughly for
2�103�. The first thing we require to do is to verify that our
fluid behaves like an elastic fluid. Thus when we apply a
sinusoidal body force we expect that an elastic fluid will also
respond with a sinusoidal longitudinal velocity. However, be-
cause of viscous dissipation, the fluid will be out of phase
with the body force. According to the continuum model of
Pereira �19� the phase angle, � that the longitudinal velocity
lags behind the body force is related to � and the forcing
frequency, � by

� � arctan���� . �27�

Simulations were initially carried out at frequencies 2� /100,
2� /40, 2� /30, 2� /20, and 2� /10 rads /� and with homo-
geneous slip boundary conditions, i.e., boundaries were not
patterned. Note, we cannot increase the frequency of the
sinusoidal body force to too large a value since the polymer
chains will not have sufficient time to respond to changes in
body force.

In response to the sinusoidally varying body force, we
expect a sinusoidally varying Poiseuille flow in the channel.
In each case we found that the response of the fluid was
indeed sinusoidally time varying so that the fluid is indeed
elastic. In addition, the longitudinal velocity lagged behind
the body force. For example, the body force and the longi-
tudinal velocity response are shown in Fig. 13 for the case
where �=2� /100 rads /�. Note, the longitudinal velocity
shown was an average over 1000 configurations, where the
averaging was done every T�, where time period T
=10,20,30,40,100 depending on the particular frequency
being studied. The phase lag is marked in Fig. 13. To obtain
a precise value of this phase lag we fit the longitudinal ve-
locity data �circles� to a sinusoid, i.e., A sin��t+��+A0. A0
and A can be obtained from the data while � is known. We
carry out a least squares fit to obtain �. In each case the least
squares error was found to be less than 10−3. The phase lags
calculated according to this method are given in Table I. As
the forcing frequency increases we find the phase lag corre-
spondingly increases, which is expected since for higher fre-
quencies the polymer chains cannot respond sufficiently
quickly, leading to a larger phase lag. The largest phase lag
that can occur is � /2 rads. Now, according to Eq. �27� we
can also obtain � for the polymer melt. These are also tabu-
lated in Table I. Interestingly, for each forcing frequency we
find a different �, with the �’s systematically increasing
with frequency. Thus we see an important deficiency of the
simplified continuum model �19�—it employs only a single
relaxation constant, �. As pointed out above this simplifica-
tion was used to obtain tractable solutions. However, a better
model for our viscoelastic fluid would be a Generalized lin-
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FIG. 13. �Color online� The body force �circles� and maximum
longitudinal velocity response �squares� as a function of time. The
scale on the left-hand side represents body force and the one on the
right-hand side represents the magnitude of uxmax

.
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ear viscoelastic model �28�, that is a superposition of linear
White-Metzner models of the form

�=�t� = 
k=1

	

�=k�t�; �=k + �k
��=k

�t
= − �k��̇��̇

=
. �28�

Given that there is not a single � that describes our fluid, but
in principle an infinite number of them we might not expect
the response of the fluid to be exactly as specified by Eq.
�26�.

We now proceed to discuss the simulations with the
�same� patterned boundary conditions as discussed in the ear-
lier section but in conjunction with the sinusoidal body force.
Now the transverse velocity profile changes with the body
force which is a sinusoidal function of time. To calculate
average transverse velocity profiles we have to consider only
those profiles which are separated by T�. We take 5000 such
configurations to evaluate the transverse velocity profiles for
each frequency which was found to be a sufficient number of
averages to compare with the constant body force case. Note,
to carry out these 5000 averages for the simulation with forc-
ing frequency of 2� /100 took approximately 7 days of cpu
time on a parallel Blue-Gene machine with 128 processors.
At the moment, this is the smallest frequency we can simu-
late so as to obtain reliable results.

As with the simulations for homogeneous slip boundary
conditions, we carried out simulations at frequencies of
2� /100, 2� /40,2� /30,2� /20, and 2� /10 rads /� keeping

the pattern length constant at kw=� /2. The resulting trans-
verse velocity profile for the case �=2� /10 rads /� is shown
in Fig. 14. Since we have taken these averages after every T�
time the velocity profile has a similar form to the constant
body force case. To compare the magnitude of the transverse
velocity with the constant body force case we have calcu-
lated the transverse velocity profile for the same setup with
the constant body force �F0=0.05� by taking 5000 averages
�see Fig. 15�. The transverse velocity profile in Fig. 14 is
shifted compared to the constant body force case in Fig. 15.
This result also complements the viscoelasticity of the fluid.
With oscillatory body force, the maximum value of the trans-
verse velocity has increased to 0.0288 �compared to a maxi-
mum value of 0.0236 in the constant body force case�. This
represents a 22% increase in the transverse velocity. Results
of simulations for other values of � are given in Table I. In
general, we find the increase is on average 20%, compared to
a constant body force, and given we have applied a maxi-
mum 10% increase in the body force this represents a rea-
sonable increase. We see that the maximum transverse veloc-
ity does not change appreciably with increasing frequency.
Thus although our simulations agrees with the continuum
theory in that a sinusoidally varying body force will increase
the transverse velocity, the simulations do not show trans-
verse velocities which increase as � increases. We believe
the reason for this is that the simplified continuum model
includes only a single � while the fluid modeled is charac-
terized by several relaxation constants. Instead the transverse
velocity be a function of a superposition of velocities corre-
sponding each relaxation constant. Hence Eq. �26� does not
hold.

Another deficiency of the continuum model �19� is that it
is only a linear viscoelastic model. When compared to our
MD simulations this is not such a serious problem, since we
use perturbations, � which are quite small �i.e., 10% of mean
body force�. However, certainly for larger perturbations a
nonlinear model would be more appropriate.

V. SUMMARY

In this study we have sort to model the flow of polymeric
fluids in narrow channels at a microscopic level. We have

TABLE I. Phase lag ���, relaxation time ���, maximum of
transverse velocity �uymax

� and percentage increase in maximum
transverse velocity compared to constant body force case for vari-
ous sinusoidally varying body force frequencies.

� 2� /100 2� /40 2� /30 2� /20 2� /10

� 0.516 1.007 1.167 1.375 1.571

� 9.02 10.08 11.17 16.08 	

uymax
0.0287 0.0284 0.0283 0.0281 0.0288

% increase 21.2 20.1 19.7 18.8 21.7

FIG. 14. �Color online� Transverse velocity profile uy�x ,y� for
the time dependent body force case for the frequency �=2� /10.

FIG. 15. �Color online� Transverse velocity profile uy�x ,y� for
constant body force case with 5000 averages.
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focused on enhancing the mixing in these fluids with a com-
bination of active and passive techniques. The passive
method is to pattern the channel boundaries with regions of
high and low slip while the active method is to employ a
sinusoidally varying pressure. We first modeled the passive
method by varying the interaction between monomers and
wall atoms. The polymeric fluid was characterized as a shear
thinning fluid and we found significant transverse flows es-
pecially when the pattern spacing was greater than the radius
of gyration of a polymer chain. In this case polymers can
tend to stick or slip adjacent to the different patterned regions
and thus perturb the dominant Poiseuille flow. In the case
that the pattern spacing is smaller than the radius of gyration
of the polymer chains the transverse velocity is suppressed,
since now the polymer chains span two or more regions and
begin to interact with them as if the boundaries are homoge-
neous. Thus the flow returns to being strongly Poiseuille-
like. Snapshots of individual polymer chains reveal that they
take up more closely bound conformations in contrast to
other studies �15� where the polymer chains were found to
stretch in the direction of the flow. We attribute this differ-
ence to the patterning on the walls which causes the chains to
respond differently depending on the region they are adjacent
to. In general we found qualitative agreement with previous
continuum theory �19�. We made quantitative comparison
with this theory and have found good agreement on the mag-
nitude of the generated transverse velocity.

We proceeded to consider the effect of an offset arrange-
ment of the patterned regions. In this case, although the mag-
nitude of the transverse velocity did not increase it was an
improvement on the previous case, since now transverse flow
is generated throughout the width of the channel �see Fig.
11�. In the case where the patterned regions are aligned on
either side of the channel, transverse flow is zero in the
middle of the channel for the entire length of the channel.

Hence fluid in this region will not mix due to fluid convec-
tion �only via diffusion�.

We have continued on to couple a sinusoidally varying
pressure gradient with the patterned boundary conditions. In
this case the continuum theory had predicted an enhance-
ment of the transverse velocity. Our simulations also found
an enhancement of the transverse flow for a sinusoidally
varying pressure. The increase was reasonable—a 20% in-
crease corresponding to a 10% increase in the amplitude of
the pressure. The continuum modeling however predicted
that this transverse velocity should increase with frequency.
Our simulations did not show this for two reasons: �i� the
polymeric fluid was found to have a number of relaxation
constants �whereas the continuum theory only assumed one�
and �ii� there is an upper bound on the magnitude of fre-
quency, since polymer chains cannot respond sufficiently
quickly for large frequencies.

Finally, it would be interesting to consider the effects of
regions of zero shear stress �infinite slip� as studied for
simple fluids by molecular dynamics by Cottine-Bionne et
al. �10� and experimentally by Ou et al. �18�. However, such
a situation is difficult theoretically using the perturbative ap-
proach tested here. Nonetheless, this will be addressed in
future work. We note that the device in Ref. �18� based on
the principal of alternating no slip and zero shear stress re-
gions enhanced mixing by almost an order of magnitude.
Based on our results here, we would expect that similar ef-
ficiencies could be achieved provided the patterning length
scales are greater than the radius of gyration of the polymer.
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